The Detection and Properties of (Exo)Planetary Systems

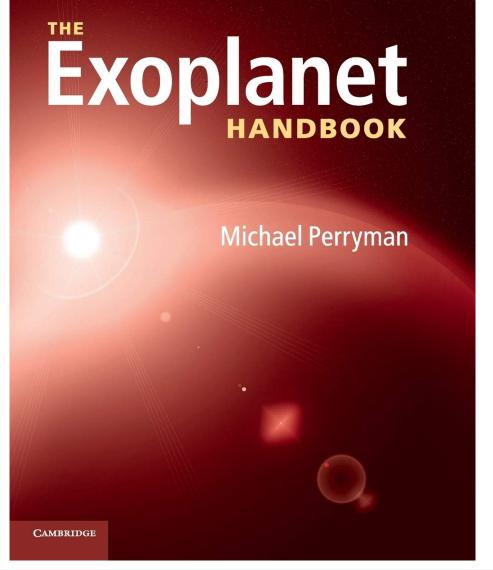
Veronika Schaffenroth

SS 2025

Thüringer Landesssternwarte Tautenburg Email: schaffenroth@tls-tautenburg.de

JLL S

© 2001 Lynette Cook


- **Part I:** Detection and properties (\sim observations) lectures by Dr. Veronika Schaffenroth
- **Part II:** Formation and evolution (\sim theory) lectures by Prof. Dr. Alexander Krivov
- Exercises to both parts: by M.Sc. Tobias Stein

Schedule of Lectures

- 10. April: Introduction and Solar System
- 17. April: The Radial Velocity Method: Instruments and Techniques
- 24. April: The Radial Velocity Method
- 1. May: holiday
- 8. May: The Transit Method
- 15. May The Transit Method, Ground-based and space-based results
- 22. May: no lecture (instead Excursion to Observatory in Tautenburg in July)
- 29. May: holiday
- 5. June: The Astrometric Detection of Exoplanets
- 12. June: Direct Imaging
- 19. June: Microlensing and Pulsar Planets
- 26. June: Properties of Exoplanets
- 3. July: Atmospheres and Interiors
- 10. July: Host Stars and The Search for Habitable Planets
- x. July: Excursion to Observatory in Tautenburg

Literature

SECOND EDITION

Contents:

- Radial Velocities
- Astrometry
- Microlensing
- Transits
- Imaging
- Host Stars
- Brown Dwarfs and Free floating Planets
- Formation and Evolution
- Interiors and Atmospheres
- The Solar System

Detection and Properties of Planetary Systems

Literature

Astrophysics and Space Science Library 428

Valerio Bozza Luigi Mancini Alessandro Sozzetti Editors

Methods of Detecting Exoplanets

1st Advanced School on Exoplanetary Science

AS SI Part I The Radial Velocity Method

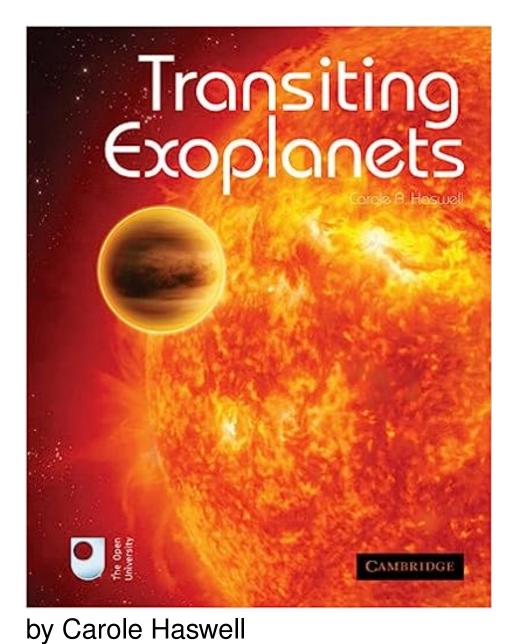
1 The Radial Velocity Method for the Detection of Exoplanets Artie P. Hatzes

Part II The Transit Method

2 Extrasolar Planetary Transits Andrew Collier Cameron

Part III The Microlensing Method

3 Microlensing Planets Andrew Gould


Part IV The Direct Imaging Method

 4 Direct Imaging of Faint Companions

 Riccardo Claudi

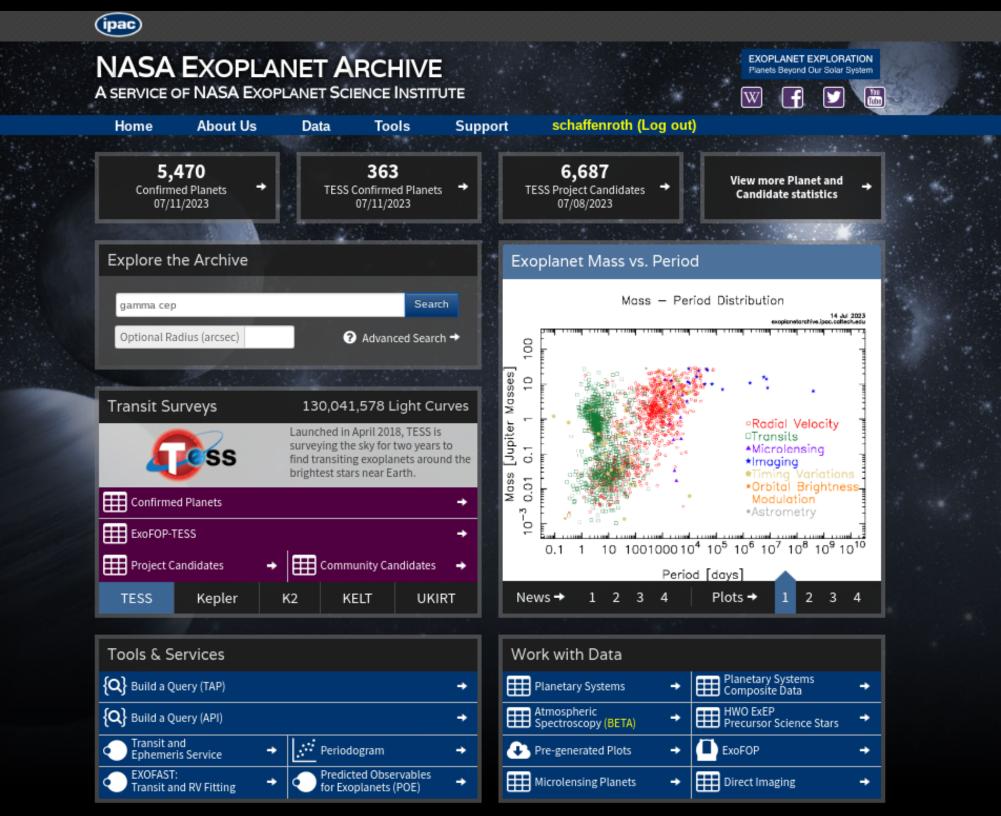
Deringer

Literature

Contents:

- Our Solar System from Afar (overview of detection methods)
- Exoplanet discoveries by the transit method
- What the transit light curve tells us
- The Exoplanet population
- Transmission spectroscopy and the Rossiter-McLaughlin effect
- Host Stars
- Secondary Eclipses and phase variations
- Transit timing variations and orbital dynamics
- Brave new worlds

Detection and Properties of Planetary Systems


Exoplanet data bases:

```
The first: Exoplanet Encyclopaedia
www.exoplanet.eu (Jean Schneider)
```

The best: NASA Exoplanet Archive:

https://exoplanetarchive.ipac.caltech.edu/

- Interactive catalog (radial velocity, transits, etc)
- On line histograms and correlation plots
- Download data

	gam	gam Cep C Cep Ab Overview Notes	Dverview System Parameters Ancillary	Nearby Data	a Legend Exp.	and All			gam Ce	gam Cep b p 4.66 R. 4858.00 K
			DISCOVERY DATA							
		🖈 gam Cep Ab 🛛 Exop	bliography 25 oplanet Archive Notes 2	Host gam Cep	Planet	Method Radial Velocity	Year 2003	Reference Hatzes et al. 2003	Disposition Confirmed Planet	
	★ gam Cep └─ � gam Cep b		m Cep Ab Nearby Data 🖪 🗖 m Cep Nearby Data 🕙 🖉	Bannoch	- Faul och p	Rudiat velocity	2003	hatzes et al. 2005	commertance	
	Exoplanet Archive Notes (2)								+	
🚖 gam Cep Ab Stellar Parameters (0 Solutions) 📧										
🚖 gam Cep Stellar Parameters (13 Solutions) 🖭								+		
		ary Parameters (3 Solutions) TOOLS							-	
Source	Endl et al. 2011 ★ 🗞		Benedict et al. 2018	★%					Hatzes et al. 200	03 ★ %
τ _p (days)	2453227±87		2453248.1						2453121.925±66	ō.900
ω (deg)	94.6±34.6		86						49.6±25.6	
$M_p \sin i(M_{\oplus})$	587.96±50.85								540.3±127.1	
<i>M_p</i> sin <i>i</i> (M _{Jup})	1.85±0.16								1.7±0.4 0.12±0.05	
<i>e</i> P(days)	0.049±0.034 903.3±1.5		0.08						0.12±0.05 905.574±3.08	
K (m/s)	31.1±0.97		32.4						27.50±1.5	
a (au)	2.05±0.06								2.13±0.05	
<i>M_p</i> (M _⊕)			2988 +222 -350							
м _р (М _{Јир})			9.40 ^{+0.70} -1.10							

The Nebraska Astronomy Applet: An Online Laboratory for Astronomy

http://astro.unl.edu/naap/
http://astro.unl.edu/animationsLinks.html

Astronomy Education at the University of Nebraska-Lincoln	

ADVs

HTML5

Legacy

Home > NAAP Labs

Native Apps

Home

The Nebraska Astronomy Applet Project

Workshops

Misc

Online Labs for Introductory Level Astronomy

The Nebraska Astronomy Applet Project provides online laboratories targeting the undergraduate introductory astronomy audience. Each lab consists of background materials and one or more simulators that students use as they work through a student guide. Pretests and posttests can be used to gauge student learning.

NAAP materials are designed to be flexible to accommodate a variety of needs. Student guides are provided in MS Word format (in addition to PDF format) so that they can be edited if necessary. Demonstration guides and in-class worksheets are provided for some labs, helping instructors make use of NAAP simulations even if they don't assign the accompanying lab.

Please visit the instructor information page for more details on using the NAAP labs, or the lab descriptions page for a summary of the NAAP labs. You may also want to visit the simulations list page, which includes animations from the ClassAction project as well.

The NAAP Labs

Madan

Solar System Models Basic Coordinates and Seasons The Rotating Sky Motions of the Sun Planetary Orbit Simulator Lunar Phase Simulator Blackbody Curves & UBV Filters Hydrogen Energy Levels Hertzsprung-Russell Diagram Eclipsing Binary Stars Atmospheric Retention Extrasolar Planets Variable Star Photometry Cosmic Distance Ladder Habitable Zones

Stellar Properties

Distance Modulus Explorer Stellar Velocity Calculator Parallax Calculator Spectroscopic Parallax Simulator Stellar Luminosity Calculator Flux Simulator HR Explorer (NAAP)

Binary and Variable Stars

Eclipsing Binary Simulator Aliasing in Wagon Wheels Center of Mass Simulator Lightcurve Simulator

Milky Way Galaxy

Milky Way Rotational Velocity Traffic Density Analogy

Cosmology

Balloon Universe Galactic Redshift Simulator

Solar System Characteristics

Planet Formation Temperatures Plot Solar System Properties Explorer

ExtraSolar Planets

Influence of Planets on the Sun Radial Velocity Graph Transit Simulator (NAAP) Extrasolar Planet Radial Velocity Demonstrator Radial Velocity Simulator (NAAP) Doppler Shift Demonstrator Pulsar Period Simulator Hammer Thrower Comparison

Solar System Debris

Driving Through Snow Planetary Configurations Simulator (NAAP) Planetary Orbit Simulator (NAAP) You have some background in Astronomy from an introductory course

I assume that you:

- 1. Know what a star is
- 2. Know what a planet is
- 3. Know about Kepler's three laws
- 4. Know what a Hertzsprung-Russell Diagram is
- 5. Know what the Main Sequence is
- 6. Know what a Spectral Type is
- 7. Know what the magnitude scale is

If you don't, The Nebraska Astronomy Applet Project is a good place to learn